Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359038

RESUMO

Inflammation is thought to contribute to the etiology of interstitial cystitis/bladder pain syndrome (IC/BPS). It is well-known that disruption in metabolism in immune cells contributes to inflammation in several inflammatory diseases. The purpose of this study was to investigate whether cellular bioenergetics is altered in monocytes and lymphocytes from women with IC/BPS, and if these alterations correlate with systemic inflammatory markers. Age and BMI matched adult healthy women (HS; n = 18) and women with IC/BPS (n = 18) were included in the study. Blood was collected to assess cellular bioenergetics in monocytes and lymphocytes using a Seahorse XF96 Analyzer and plasma cytokine levels were measured using Meso Scale Discovery immunoassays. The correlation between bioenergetic parameters, cytokines, and demographics was determined using Pearson correlation coefficients. Means of the two groups were compared using the two-group t-test. Patients with IC/BPS had reduced monocyte oxygen consumption rates and glycolytic rates compared to healthy subjects. In contrast, lymphocytes from these patients had increased oxygen consumption rates and glycolytic rates. Several cytokines and chemokines including Interferon-gamma (IFN-É£), tumor necrosis factor alpha (TNF-ɑ), Interleukin-6 (IL-6), Interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) levels were significantly elevated in the plasma of patients with IC/BPS. However, Transforming growth factor (TGF-ß) and Interleukin-10 (IL-10) levels were significantly decreased in IC/BPS patients compared to HS. In addition, Interferon gamma (IFN-É£), TNF-ɑ, IL-8, and TGF-ß levels correlated with several bioenergetic parameters in monocytes or lymphocytes from healthy subjects. In contrast, TNF-ɑ and IL-8 correlated with bioenergetic parameters in monocytes from IC/BPS patients. Monocyte and lymphocyte cellular bioenergetics and plasma cytokine levels are different in patients with IC/PBS compared to HS. It appears that systemic inflammation is greater in this cohort which may negatively impact immune cell function. The relationship between cellular bioenergetics and inflammation in monocytes and lymphocytes could be important in understanding the pathogenesis of IC/PBS and warrants further investigation.


Assuntos
Cistite Intersticial , Adulto , Humanos , Feminino , Cistite Intersticial/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Fator de Crescimento Transformador beta/metabolismo
2.
Redox Biol ; 67: 102919, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806112

RESUMO

Oxalate is a small compound found in certain plant-derived foods and is a major component of calcium oxalate (CaOx) kidney stones. Individuals that consume oxalate enriched meals have an increased risk of forming urinary crystals, which are precursors to CaOx kidney stones. We previously reported that a single dietary oxalate load induces nanocrystalluria and reduces monocyte cellular bioenergetics in healthy adults. The purpose of this study was to extend these investigations to identify specific oxalate-mediated mechanisms in monocytes and macrophages. We performed RNA-Sequencing analysis on monocytes isolated from healthy subjects exposed to a high oxalate (8 mmol) dietary load. RNA-sequencing revealed 1,198 genes were altered and Ingenuity Pathway Analysis demonstrated modifications in several pathways including Interleukin-10 (IL-10) anti-inflammatory cytokine signaling, mitochondrial metabolism and function, oxalic acid downstream signaling, and autophagy. Based on these findings, we hypothesized that oxalate induces mitochondrial and lysosomal dysfunction in monocytes and macrophages via IL-10 and reactive oxygen species (ROS) signaling which can be reversed with exogenous IL-10 or Mitoquinone (MitoQ; a mitochondrial targeted antioxidant). We exposed monocytes and macrophages to oxalate in an in-vitro setting which caused oxidative stress, a decline in IL-10 cytokine levels, mitochondrial and lysosomal dysfunction, and impaired autophagy in both cell types. Administration of exogenous IL-10 and MitoQ attenuated these responses. These findings suggest that oxalate impairs metabolism and immune response via IL-10 signaling and mitochondrial ROS generation in both monocytes and macrophages which can be potentially limited or reversed. Future studies will examine the benefits of these therapies on CaOx crystal formation and growth in vivo.


Assuntos
Cálculos Renais , Monócitos , Adulto , Humanos , Monócitos/metabolismo , Oxalatos , Espécies Reativas de Oxigênio/metabolismo , Interleucina-10/metabolismo , Oxalato de Cálcio/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/metabolismo , RNA
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166442, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562038

RESUMO

Meals rich in oxalate are associated with calcium oxalate (CaOx) kidney stone disease. Hydroxy-L-proline (HLP) is an oxalate precursor found in milk and collagen-containing foods. HLP has been shown to induce CaOx crystal formation in rodents. The purpose of this study was to evaluate the effect of HLP induced oxalate levels on inflammation and renal leukocytes during crystal formation. Male Sprague-Dawley rats (6-8 weeks old) were fed a control diet containing no oxalate for 3 days before being randomized to continue the control diet or 5% HLP for up to 28 days. Blood, 24 h urine, and kidneys were collected on Days 0, 7, 14, or 28. Urinary oxalate levels, crystal deposition, and renal macrophage markers were evaluated using ion chromatography-mass spectrometry, immunohistochemistry, and qRT-PCR. Renal leukocytes were assessed using flow cytometry and RNA-sequencing. HLP feeding increased urinary oxalate levels and renal crystal formation in animals within 7 days. HLP also increased renal macrophage populations on Days 14 and 28. Transcriptome analysis revealed that renal macrophages from animals fed HLP for 7 days were involved in inflammatory response and disease, stress response to LPS, oxidative stress, and immune cell trafficking. Renal macrophages isolated on Day 14 were involved in cell-mediated immunological pathways, ion homeostasis, and inflammatory response. Collectively, these findings suggest that HLP-mediated oxalate levels induce markers of inflammation, leukocyte populations, and reprograms signaling pathways in macrophages in a time-dependent manner. Additional studies investigating the significance of oxalate on renal macrophages could aid in our understanding of kidney stone formation.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Animais , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Hidroxiprolina , Inflamação , Cálculos Renais/metabolismo , Macrófagos/metabolismo , Masculino , Nefrolitíase , Oxalatos , Ratos , Ratos Sprague-Dawley
4.
J Am Heart Assoc ; 11(5): e020450, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191321

RESUMO

Background Premenopausal women are less likely to develop hypertension and salt-related complications than are men, yet the impact of sex on mechanisms regulating Na+ homeostasis during dietary salt challenges is poorly defined. Here, we determined whether female rats have a more efficient capacity to acclimate to increased dietary salt intake challenge. Methods and Results Age-matched male and female Sprague Dawley rats maintained on a normal-salt (NS) diet (0.49% NaCl) were challenged with a 5-day high-salt diet (4.0% NaCl). We assessed serum, urinary, skin, and muscle electrolytes; total body water; and kidney Na+ transporters during the NS and high-salt diet phases. During the 5-day high-salt challenge, natriuresis increased more rapidly in females, whereas serum Na+ and body water concentration increased only in males. To determine if females are primed to handle changes in dietary salt, we asked the question whether the renal endothelin-1 natriuretic system is more active in female rats, compared with males. During the NS diet, female rats had a higher urinary endothelin-1 excretion rate than males. Moreover, Ingenuity Pathway Analysis of RNA sequencing data identified the enrichment of endothelin signaling pathway transcripts in the inner medulla of kidneys from NS-fed female rats compared with male counterparts. Notably, in human subjects who consumed an Na+-controlled diet (3314-3668 mg/day) for 3 days, women had a higher urinary endothelin-1 excretion rate than men, consistent with our findings in NS-fed rats. Conclusions These results suggest that female sex confers a greater ability to maintain Na+ homeostasis during acclimation to dietary Na+ challenges and indicate that the intrarenal endothelin-1 natriuretic pathway is enhanced in women.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Aclimatação , Animais , Pressão Sanguínea , Dieta , Endotelina-1/metabolismo , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio na Dieta/metabolismo
6.
Front Immunol ; 12: 694865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745086

RESUMO

Individuals with calcium oxalate (CaOx) kidney stones can have secondarily infected calculi which may play a role in the development of recurrent urinary tract infection (UTI). Uropathogenic Escherichia coli (UPEC) is the most common causative pathogen of UTIs. Macrophages play a critical role in host immune defense against bacterial infections. Our previous study demonstrated that oxalate, an important component of the most common type of kidney stone, impairs monocyte cellular bioenergetics and redox homeostasis. The objective of this study was to investigate whether oxalate compromises macrophage metabolism, redox status, anti-bacterial response, and immune response. Monocytes (THP-1, a human monocytic cell line) were exposed to sodium oxalate (soluble oxalate; 50 µM) for 48 hours prior to being differentiated into macrophages. Macrophages were subsequently exposed to calcium oxalate crystals (50 µM) for 48 hours followed by UPEC (MOI 1:2 or 1:5) for 2 hours. Peritoneal macrophages and bone marrow-derived macrophages (BMDM) from C57BL/6 mice were also exposed to oxalate. THP-1 macrophages treated with oxalate had decreased cellular bioenergetics, mitochondrial complex I and IV activity, and ATP levels compared to control cells. In addition, these cells had a significant increase in mitochondrial and total reactive oxygen species levels, mitochondrial gene expression, and pro-inflammatory cytokine (i.e. Interleukin-1ß, IL-1ß and Interleukin-6, IL-6) mRNA levels and secretion. In contrast, oxalate significantly decreased the mRNA levels and secretion of the anti-inflammatory cytokine, Interleukin-10 (IL-10). Further, oxalate increased the bacterial burden of primary macrophages. Our findings demonstrate that oxalate compromises macrophage metabolism, redox homeostasis, and cytokine signaling leading to a reduction in anti-bacterial response and increased infection. These data highlight a novel role of oxalate on macrophage function.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Oxalatos/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Infecções Bacterianas/imunologia , Citocinas/biossíntese , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Células THP-1
7.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34609963

RESUMO

Mounting evidence points to alterations in mitochondrial metabolism in renal cell carcinoma (RCC). However, the mechanisms that regulate the TCA cycle in RCC remain uncharacterized. Here, we demonstrate that loss of TCA cycle enzyme expression is retained in RCC metastatic tissues. Moreover, proteomic analysis demonstrates that reduced TCA cycle enzyme expression is far more pronounced in RCC relative to other tumor types. Loss of TCA cycle enzyme expression is correlated with reduced expression of the transcription factor PGC-1α, which is also lost in RCC tissues. PGC-1α reexpression in RCC cells restores the expression of TCA cycle enzymes in vitro and in vivo and leads to enhanced glucose carbon incorporation into TCA cycle intermediates. Mechanistically, TGF-ß signaling, in concert with histone deacetylase 7 (HDAC7), suppresses TCA cycle enzyme expression. Our studies show that pharmacologic inhibition of TGF-ß restores the expression of TCA cycle enzymes and suppresses tumor growth in an orthotopic model of RCC. Taken together, this investigation reveals a potentially novel role for the TGF-ß/HDAC7 axis in global suppression of TCA cycle enzymes in RCC and provides insight into the molecular basis of altered mitochondrial metabolism in this malignancy.


Assuntos
Ciclo do Ácido Cítrico/imunologia , Perfilação da Expressão Gênica/métodos , Histona Desacetilases/metabolismo , Neoplasias Renais/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Camundongos , Transfecção
8.
Front Immunol ; 12: 617508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732242

RESUMO

Diet has been associated with several metabolic diseases and may impact immunity. Increased consumption of meals with high oxalate content may stimulate urinary calcium oxalate (CaOx) crystals, which are precursors to CaOx kidney stones. We previously reported that CaOx stone formers have decreased monocyte cellular bioenergetics compared to healthy participants and oxalate reduces monocyte metabolism and redox status in vitro. The purpose of this study was to investigate whether dietary oxalate loading impacts monocyte cellular bioenergetics, mitochondrial complex activity, and inflammatory signaling in humans. Healthy participants (n = 40; 31.1 ± 1.3 years) with a BMI of 24.9 ± 0.6 kg/m2 consumed a controlled low oxalate diet for 3 days before drinking a blended preparation of fruits and vegetables containing a large amount of oxalate. Blood and urine were collected before (pre-oxalate) and for 5 h after the oxalate load to assess urinary oxalate levels, monocyte cellular bioenergetics and mitochondrial complex activity, and plasma cytokine/chemokine levels. Urinary oxalate levels significantly increased in post-oxalate samples compared to pre-oxalate samples. Monocyte cellular bioenergetics, mitochondrial complex I activity, and plasma cytokine and chemokine levels were altered to varying degrees within the study cohort. We demonstrate for the first time that dietary oxalate loading may impact monocyte metabolism and immune response in a cohort of healthy adults, but these response are variable. Further studies are warranted to understand oxalate mediated mechanisms on circulating monocytes and how this potentially influences CaOx kidney stone formation. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03877276.


Assuntos
Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Oxalatos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Adulto , Biomarcadores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Contagem de Leucócitos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Urinálise
9.
J Vis Exp ; (168)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645589

RESUMO

Kidney stones are becoming more prevalent worldwide in adults and children. The most common type of kidney stone is comprised of calcium oxalate (CaOx) crystals. Crystalluria occurs when urine becomes supersaturated with minerals (e.g., calcium, oxalate, phosphate) and precedes kidney stone formation. Standard methods to assess crystalluria in stone formers include microscopy, filtration, and centrifugation. However, these methods primarily detect microcrystals and not nanocrystals. Nanocrystals have been suggested to be more harmful to kidney epithelial cells than microcrystals in vitro. Here, we describe the ability of Nanoparticle Tracking analysis (NTA) to detect human urinary nanocrystals. Healthy adults were fed a controlled oxalate diet prior to drinking an oxalate load to stimulate urinary nanocrystals. Urine was collected for 24 hours before and after the oxalate load. Samples were processed and washed with ethanol to purify samples. Urinary nanocrystals were stained with the calcium binding fluorophore, Fluo-4 AM. After staining, the size and count of nanocrystals were determined using NTA. The findings from this study show NTA can efficiently detect nanocrystalluria in healthy adults. These findings suggest NTA could be a valuable early detection method of nanocrystalluria in patients with kidney stone disease.


Assuntos
Compostos de Anilina/química , Oxalato de Cálcio/urina , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Xantenos/química , Adulto , Humanos
10.
Nutrients ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379176

RESUMO

Kidney stone disease is increasing in prevalence, and the most common stone composition is calcium oxalate. Dietary oxalate intake and endogenous production of oxalate are important in the pathophysiology of calcium oxalate stone disease. The impact of dietary oxalate intake on urinary oxalate excretion and kidney stone disease risk has been assessed through large cohort studies as well as smaller studies with dietary control. Net gastrointestinal oxalate absorption influences urinary oxalate excretion. Oxalate-degrading bacteria in the gut microbiome, especially Oxalobacter formigenes, may mitigate stone risk through reducing net oxalate absorption. Ascorbic acid (vitamin C) is the main dietary precursor for endogenous production of oxalate with several other compounds playing a lesser role. Renal handling of oxalate and, potentially, renal synthesis of oxalate may contribute to stone formation. In this review, we discuss dietary oxalate and precursors of oxalate, their pertinent physiology in humans, and what is known about their role in kidney stone disease.


Assuntos
Dieta , Oxalatos/metabolismo , Oxalatos/urina , Bactérias , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/urina , Microbioma Gastrointestinal/fisiologia , Humanos , Rim , Cálculos Renais/urina , Nefrolitíase , Oxalobacter formigenes , Urolitíase
11.
Kidney Int Rep ; 5(7): 1040-1051, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647761

RESUMO

INTRODUCTION: Crystalluria is thought to be associated with kidney stone formation and can occur when urine becomes supersaturated with calcium, oxalate, and phosphate. The principal method used to identify urinary crystals is microscopy, with or without a polarized light source. This method can detect crystals above 1 µm in diameter (microcrystals). However, analyses of calcium oxalate kidney stones have indicated that crystallite components in these calculi are 50-100 nm in diameter. Recent studies have suggested that nanocrystals (<200 nm) elicit more injury to renal cells compared to microcrystals. The purpose of this study was to determine whether (i) urinary nanocrystals can be detected and quantified by nanoparticle tracking analysis (NTA, a high-resolution imaging technology), (ii) early-void urine samples from healthy subjects contain calcium nanocrystals, and (iii) a dietary oxalate load increases urinary nanocrystal formation. METHODS: Healthy subjects consumed a controlled low-oxalate diet for 3 days before a dietary oxalate load. Urinary crystals were isolated by centrifugation and assessed using NTA before and 5 hours after the oxalate load. The morphology and chemical composition of crystals was assessed using electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and ion chromatography-mass spectrometry (IC-MS). RESULTS: Urinary calcium oxalate nanocrystals were detected in pre-load samples and increased substantially following the oxalate load. CONCLUSION: These findings indicate that NTA can quantify urinary nanocrystals and that meals rich in oxalate can promote nanocrystalluria. NTA should provide valuable insight about the role of nanocrystals in kidney stone formation.

12.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251515

RESUMO

Analysis of transcriptomic data demonstrates extensive epigenetic gene silencing of the transcription factor PRDM16 in renal cancer. We show that restoration of PRDM16 in RCC cells suppresses in vivo tumor growth. RNaseq analysis reveals that PRDM16 imparts a predominantly repressive effect on the RCC transcriptome including suppression of the gene encoding semaphorin 5B (SEMA5B). SEMA5B is a HIF target gene highly expressed in RCC that promotes in vivo tumor growth. Functional studies demonstrate that PRDM16's repressive properties, mediated by physical interaction with the transcriptional corepressors C-terminal binding proteins (CtBP1/2), are required for suppression of both SEMA5B expression and in vivo tumor growth. Finally, we show that reconstitution of RCC cells with a PRDM16 mutant unable to bind CtBPs nullifies PRDM16's effects on both SEMA5B repression and tumor growth suppression. Collectively, our data uncover a novel epigenetic basis by which HIF target gene expression is amplified in kidney cancer and a new mechanism by which PRDM16 exerts its tumor suppressive effects.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/genética , Fatores de Transcrição/metabolismo , Oxirredutases do Álcool/metabolismo , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colforsina/farmacologia , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Fenótipo , Regiões Promotoras Genéticas/genética , Rosiglitazona/farmacologia , Semaforinas/genética , Semaforinas/metabolismo , Transcrição Gênica/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Redox Biol ; 31: 101489, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32197946

RESUMO

Sex differences in redox signaling in the kidney present new challenges and opportunities for understanding the physiology and pathophysiology of the kidney. This review will focus on reactive oxygen species, immune-related signaling pathways and endothelin-1 as potential mediators of sex-differences in redox homeostasis in the kidney. Additionally, this review will highlight male-female differences in redox signaling in several major cardiovascular and renal disorders namely acute kidney injury, diabetic nephropathy, kidney stone disease and salt-sensitive hypertension. Furthermore, we will discuss the contribution of redox signaling in the pathogenesis of postmenopausal hypertension and preeclampsia.


Assuntos
Rim , Caracteres Sexuais , Feminino , Homeostase , Humanos , Rim/metabolismo , Masculino , Oxirredução , Gravidez , Espécies Reativas de Oxigênio/metabolismo
14.
Am J Physiol Renal Physiol ; 316(3): F409-F413, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566003

RESUMO

Dietary oxalate is plant-derived and may be a component of vegetables, nuts, fruits, and grains. In normal individuals, approximately half of urinary oxalate is derived from the diet and half from endogenous synthesis. The amount of oxalate excreted in urine plays an important role in calcium oxalate stone formation. Large epidemiological cohort studies have demonstrated that urinary oxalate excretion is a continuous variable when indexed to stone risk. Thus, individuals with oxalate excretions >25 mg/day may benefit from a reduction of urinary oxalate output. The 24-h urine assessment may miss periods of transient surges in urinary oxalate excretion, which may promote stone growth and is a limitation of this analysis. In this review we describe the impact of dietary oxalate and its contribution to stone growth. To limit calcium oxalate stone growth, we advocate that patients maintain appropriate hydration, avoid oxalate-rich foods, and consume an adequate amount of calcium.


Assuntos
Cálculos Renais/etiologia , Oxalatos , Cálcio/urina , Oxalato de Cálcio , Cálcio da Dieta/urina , Dieta , Humanos , Cálculos Renais/urina
16.
Redox Biol ; 15: 207-215, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29272854

RESUMO

Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease.


Assuntos
Rim/metabolismo , Monócitos/efeitos dos fármacos , Nefrolitíase/metabolismo , Oxirredução/efeitos dos fármacos , Adulto , Fosfatos de Cálcio/metabolismo , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Rim/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nefrolitíase/patologia , Oxalatos/química , Oxalatos/farmacologia
17.
Redox Biol ; 9: 57-66, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27393890

RESUMO

Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neutrophil NADPH oxidases consume large quantities of oxygen to rapidly generate ROS, a process that is referred to as the oxidative burst. These ROS are required for the efficient removal of phagocytized cellular debris and pathogens. In chronic inflammatory diseases, neutrophils are exposed to increased levels of oxidants and pro-inflammatory cytokines that can further prime oxidative burst responses and generate lipid oxidation products such as 4-hydroxynonenal (4-HNE). In this study we hypothesized that since 4-HNE can target glycolysis then this could modify the oxidative burst. To address this the oxidative burst was determined in freshly isolated healthy subject neutrophils using 13-phorbol myristate acetate (PMA) and the extracellular flux analyzer. Neutrophils pretreated with 4-HNE exhibited a significant decrease in the oxidative burst response and phagocytosis. Mass spectrometric analysis of alkyne-HNE treated neutrophils followed by click chemistry detected modification of a number of cytoskeletal, metabolic, redox and signaling proteins that are critical for the NADPH oxidase mediated oxidative burst. These modifications were confirmed using a candidate immunoblot approach for critical proteins of the active NADPH oxidase enzyme complex (Nox2 gp91phox subunit and Rac1 of the NADPH oxidase) and glyceraldehyde phosphate dehydrogenase, a critical enzyme in the metabolic regulation of oxidative burst. Taken together, these data suggest that 4-HNE-induces a pleiotropic mechanism to inhibit neutrophil function. These mechanisms may contribute to the immune dysregulation associated with chronic pathological conditions where 4-HNE is generated.


Assuntos
Aldeídos/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Fagocitose/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Adulto , Proteínas do Citoesqueleto/metabolismo , Glicólise/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia
18.
Urology ; 93: 224.e1-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26972146

RESUMO

OBJECTIVE: To investigate whether mitochondrial function is altered in circulating immune cells from calcium oxalate (CaOx) stone formers compared to healthy subjects. MATERIALS AND METHODS: Adult healthy subjects (n = 18) and CaOx stone formers (n = 12) were included in a pilot study. Data collection included demographic and clinical values from electronic medical records. Bioenergetic function was assessed in monocytes, lymphocytes, and platelets isolated from blood samples using the Seahorse XF96 Analyzer. Plasma interleukin-6 (IL-6) was measured using enzyme-linked immunosorbent assay. RESULTS: All participants were age matched (44.5 ± 3.0 years for healthy subjects vs 42.3 ± 4.8 years for CaOx stone formers, P = .6905). CaOx stone formers did not have urinary tract infection, ureteral stones, or obstructing renal stones. Monocyte mitochondrial function was decreased in CaOx stone formers compared to healthy subjects. Specifically, mitochondrial maximal respiration (P = .0011) and reserve capacity (P < .0001) were significantly lower. In contrast, lymphocyte and platelet mitochondrial function was similar between the 2 groups. The bioenergetic health index, an integrated value of mitochondrial function, was significantly lower in monocytes from CaOx stone formers compared to healthy subjects (P = .0041). Lastly, plasma IL-6 levels were significantly increased (P = .0324). CONCLUSION: The present pilot study shows that CaOx stone formers have decreased monocyte mitochondrial function. Plasma IL-6 was also increased in this cohort. These data suggest that impaired monocyte mitochondrial function and inflammation may be linked to CaOx kidney stone formation. Further studies are needed to confirm these findings in a larger cohort of patients.


Assuntos
Oxalato de Cálcio/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/metabolismo , Mitocôndrias/fisiologia , Monócitos/fisiologia , Adulto , Oxalato de Cálcio/análise , Feminino , Humanos , Interleucina-6/sangue , Cálculos Renais/química , Masculino , Projetos Piloto
19.
Redox Biol ; 8: 43-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26748041

RESUMO

Metabolic and bioenergetic dysfunction are associated with oxidative stress and thought to be a common underlying mechanism of chronic diseases such as atherosclerosis, diabetes, and neurodegeneration. Recent findings support an emerging concept that circulating leukocytes and platelets can act as sensors or biomarkers of mitochondrial function in patients subjected to metabolic diseases. It is proposed that systemic stress-induced alterations in leukocyte bioenergetics are the consequence of several factors including reactive oxygen species. This suggests that oxidative stress mediated changes in leukocyte mitochondrial function could be used as an indicator of bioenergetic health in individuals. To test this concept, we investigated the effect of the redox cycling agent, 2,3 dimethoxynaphthoquinone (DMNQ) on the bioenergetic profiles of monocytes isolated from healthy human subjects using the extracellular flux analyzer. In addition, we tested the hypothesis that the bioenergetic health index (BHI), a single value that represents the bioenergetic health of individuals, is dynamically sensitive to oxidative stress in human monocytes. DMNQ decreased monocyte ATP-linked respiration, maximal respiration, and reserve capacity and caused an increase in proton leak and non-mitochondrial respiration compared to monocytes not treated with DMNQ. The BHI was a more sensitive indicator of the DMNQ-dependent changes in bioenergetics than any individual parameter. These data suggest that monocytes are susceptible to oxidative stress mediated by DMNQ and this can be accurately assessed by the BHI. Taken together, our findings suggest that the BHI has the potential to act as a functional biomarker of the impact of systemic oxidative stress in patients with metabolic disorders.


Assuntos
Metabolismo Energético , Monócitos/metabolismo , Estresse Oxidativo , Adulto , Biomarcadores , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/efeitos dos fármacos , Naftoquinonas/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
Lab Invest ; 95(2): 132-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437645

RESUMO

Atherosclerosis and valvular heart disease often require treatment with corrective surgery to prevent future myocardial infarction, ischemic heart disease, and heart failure. Mechanisms underlying the development of the associated complications of surgery are multifactorial and have been linked to inflammation and oxidative stress, classically as measured in the blood or plasma of patients. Postoperative pericardial fluid (PO-PCF) has not been investigated in depth with respect to the potential to induce oxidative stress. This is important because cardiac surgery disrupts the integrity of the pericardial membrane surrounding the heart and causes significant alterations in the composition of the pericardial fluid (PCF). This includes contamination with hemolyzed blood and high concentrations of oxidized hemoglobin, which suggests that cardiac surgery results in oxidative stress within the pericardial space. Accordingly, we tested the hypothesis that PO-PCF is highly pro-oxidant and that the potential interaction between inflammatory cell-derived hydrogen peroxide with hemoglobin is associated with oxidative stress. Blood and PCF were collected from 31 patients at the time of surgery and postoperatively from 4 to 48 h after coronary artery bypass grafting, valve replacement, or valve repair (mitral or aortic). PO-PCF contained high concentrations of neutrophils and monocytes, which are capable of generating elevated amounts of superoxide and hydrogen peroxide through the oxidative burst. In addition, PO-PCF primed naive neutrophils resulting in an enhanced oxidative burst upon stimulation. The PO-PCF also contained increased concentrations of cell-free oxidized hemoglobin that was associated with elevated levels of F2α isoprostanes and prostaglandins, consistent with both oxidative stress and activation of cyclooxygenase. Lastly, protein analysis of the PO-PCF revealed evidence of protein thiol oxidation and protein carbonylation. We conclude that PO-PCF is highly pro-oxidant and speculate that it may contribute to the risk of postoperative complications.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Líquido Extracelular/metabolismo , Hemoglobinas/metabolismo , Estresse Oxidativo/fisiologia , Pericárdio/fisiopatologia , Complicações Pós-Operatórias/fisiopatologia , Análise de Variância , Contagem de Células Sanguíneas , Eletroforese em Gel de Poliacrilamida , F2-Isoprostanos/metabolismo , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/fisiologia , Espectrometria de Massas , Neutrófilos/metabolismo , Oxirredução , Pericárdio/metabolismo , Carbonilação Proteica , Corantes de Rosanilina , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA